TOSHIBA Memory Solutions

Memory Division
Semiconductor & Storage Products Company
Toshiba Corp.

Sept/2015
Toshiba & Semiconductor market Introduction
Worldwide Semiconductor Devices Market Trend

Semiconductor Market grows continuously.

W/W market size (B$)

Source: result = WSTS. Estimation = TOSHIBA
Growth of the storage market with the rapid expansion of available information. Continuous high bit growth for NAND Flash due to replacement of HDD/ODD.

Overall Information

CAGR 62%

Storage Market

HDD

Optical

Flash

Exa bytes [1e18 bytes]

1800EB

161EB

5.4EB

Source: by TOSHIBA based on TSR(HDD), JRIA(CD/DVD/BD) & IDC White Paper (formation and available storage)
SSDs are biggest driver for Si GB expansion, TOSHIBA SSD supports it!

Mobile is still big GB eater, TOSHIBA e-MMC and UFS support it!

* Different grades of NAND for Enterprise, SSD, OEM and Retail

Source: TOSHIBA
Toshiba NAND Flash Memory Products lineup

Toshiba NAND Flash Die and Controller Technology:
- create a wide variety of products
- support market requirements

NAND Flash Memory / BiCS FLASH™

microSD / SD card / CF card / FlashAir™ / SeeQVault™ / USB

BENAND™, e·MMC™, UFS

Client SSD
Enterprise SSD

MCP / eMCP

FlashAir, BENAND and BiCS FLASH are trademarks of Toshiba Corporation.
SeeQVault is a trademark of NSM Initiatives LLC.
e·MMC is a trademark of JEDEC/MMCA.
Toshiba’s commitment to NAND Flash market

| **NAND Flash die** | • The finest process migration with reliable quality and the advance circuit design *(Cost & Quality)*
| | • Adopting **high performance** architecture, next gen. of Toggle DDR
| | • Original design circuit technology achieve **Low power** consumption to overcome heat issue |
| **NAND Flash controller** | • Development of the best solution by memory div.
	~ TOSHIBA knows TOSHIBA NAND Flash ~
Packaging	• Advances packaging technology to enable the **largest density** product in the industry with the thinnest/smallest size
Research & Development	• Large investment to new memory technologies as 3D Flash Memory and STT-MRAM
Flexible product output	• Capital Investment of Yokkaichi Operations
Focus in Customer Satisfaction	• Local Technical Support for World Wide Customers

© 2015 Toshiba Corporation
Wireless and Storage Trend
Info.-Plosion (Higher Resolution Screen/Camera/Various Sensors) will be required. Thus, demand for Higher Performance and Higher Density on Storage Memories will be maintained from long term market perception.
UFS v.s. e-MMC Overview

e-MMC features **Parallel I/F** which has a restriction for further performance improvement beyond HS400 (400Mbps). Meanwhile, UFS features high-speed **Serial I/F** which maintains a performance scalability to extend in the future.

<table>
<thead>
<tr>
<th></th>
<th>e-MMC</th>
<th>UFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
<td>Since 2007</td>
<td>Introduced in 2014</td>
</tr>
<tr>
<td>Architecture</td>
<td>MMC I/F (Bus, Parallel I/F)</td>
<td>UFS I/F (Serial I/F)</td>
</tr>
<tr>
<td>I/F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed</td>
<td>400Mbps (=400MB/s, Ver.5.0 or higher) *Restricted for further improvement</td>
<td>5.8Gbps x 2 Lanes (=1160MB/s, Ver.2.0)</td>
</tr>
<tr>
<td>Pin count</td>
<td>11 (8 I/O and 3 control)</td>
<td>6 (4 I/O and 2 control) or 10 (in case of 2 lanes)</td>
</tr>
<tr>
<td>Signal amp.</td>
<td>1.8V or 1.2V</td>
<td>200mVp-p</td>
</tr>
<tr>
<td>Duplex</td>
<td>Half (In serial to send and/or receive the data)</td>
<td>Full (Simultaneously to send and receive the data)</td>
</tr>
<tr>
<td>Command Queue</td>
<td>Supported in Ver.5.1</td>
<td>Support (to improve Random performance)</td>
</tr>
<tr>
<td>Command Set</td>
<td>MMC</td>
<td>SCSI</td>
</tr>
</tbody>
</table>

e-MMC features Parallel I/F which has a restriction for further performance improvement beyond HS400 (400Mbps). Meanwhile, UFS features high-speed Serial I/F which maintains a performance scalability to extend in the future.
UFS in Application Area

UFS
Can resolve performance limitation with Hi-Speed Serial I/F and new features. World’s first smartphone adopted UFS as its memory storage was released in the market in 2015. UFS will take over e-MMC’s position eventually.

e-MMC
Current De fact standard solutions for Smart Phone, Tablet and other mobile applications.

Use Case of UFS and e-MMC
- Car Navigation
- Mobile PC
- Tablet PC
- Music Player
- DVC
- Smartphone

e-MMC and UFS can be found in everywhere!
Toshiba Memory on Qualcomm Platforms

<table>
<thead>
<tr>
<th>Qualcomm Platform</th>
<th>eMCP</th>
<th>e-MMC</th>
<th>UFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSM 8996</td>
<td></td>
<td>32GB</td>
<td>32GB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>64GB</td>
<td>64GB</td>
</tr>
<tr>
<td>MSM 8994</td>
<td></td>
<td>16GB</td>
<td>32GB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32GB</td>
<td>64GB</td>
</tr>
<tr>
<td>MSM 8992</td>
<td></td>
<td>16GB</td>
<td>64GB</td>
</tr>
<tr>
<td>MSM 8976/56</td>
<td></td>
<td>16GB</td>
<td></td>
</tr>
<tr>
<td>MSM 8952</td>
<td>16GB</td>
<td>16GB + 16Gb LP3</td>
<td></td>
</tr>
<tr>
<td>MSM 8929</td>
<td>8GB</td>
<td>8Gb + 8Gb LP3</td>
<td></td>
</tr>
<tr>
<td>MSM 8916 MSM 8909</td>
<td>8GB</td>
<td>8Gb + 8Gb LP2/LP3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16GB</td>
<td>16Gb + 8Gb LP3</td>
<td></td>
</tr>
</tbody>
</table>
Toshiba NAND Flash Memory Strategy

~ from 2D to 3D and Low Power for denser storage solutions ~
Design Rule Evolution

~ 15nm : world finest geometry for NAND Flash ~

Wafer

Water flea ~2mm
Honeybee ~15mm

Cedar pollen ~30μm
Hair ~60μm

Influenza virus ~100nm
Lactic acid bacterium ~1.2μm

DNA width ~2nm

SUBJECT TO CHANGE WITHOUT NOTICE
Process Shrink trend and TOSHIBA strategy

To Date
Process Shrink → Cost Down → Market expansion

From now on
Shrink Speed getting slower → Less cost effectiveness

How to get denser storage at similar area size??

3D Technology!!

* Average of Memory/Logic

Source: TOSHIBA based on ITRS
Memory Cell Comparison

NAND Flash Memory Cell

- Metal Gate
- Block Layer
- Floating Gate
- Tunnel Layer
- Silicon

2D

BiCS FLASH Memory Cell

- Metal Gate
- Block Layer
- Charge Trap
- Tunnel Layer
- Silicon

3D

SUBJECT TO CHANGE WITHOUT NOTICE

© 2015 Toshiba Corporation
Toshiba Developed World's First 48-layer 3D Flash memory

MLC 128Gb Press Release on March 26, 2015

Since making the world’s first announcement of technology for 3D Flash memory, Toshiba has continued development towards optimizing mass production. Toshiba today announced development of the world’s first 48-layer 3D Flash memory called BiCS FLASH, a MLC 128Gb device. Sample shipments of products using the new process technology start today.

TLC 256Gb Press Release on August 4, 2015

Toshiba today unveiled the new generation of BiCS FLASH, a 3D Flash memory. The new device is the world’s first 256Gb (32GB) 48-layer device and also deploys industry-leading TLC technology. Sample shipments will start in September.

Achievement of memory performance improvements with 3D Flash memory

Toshiba is also readying for mass production in the new Fab2 at Yokkaichi Operations, that’s now under construction and will be completed in the first half of 2016.
Developed World’s First 16st NAND Flash Memory with TSV Technology

This new NAND flash memory provides the ideal solution for low latency, high bandwidth and high IOPS/Watt in flash storage applications, including high-end enterprise SSD.

Press Release on August 6, 2015

Toshiba announced the development of the world’s first 16-die (max.) stacked NAND flash memory utilizing TSV* technology.

*Through Silicon Via: TSV technology utilizes the vertical electrodes and vias to pass through the silicon dies for the connection

Prototype verification

- Enables high speed data input
 TSV technology achieves an I/O data rate of over 1Gbps which is higher than any other NAND flash memories.

- Reduces power consumption
 TSV technology reducing power consumption by approximately 50% with a low voltage supply: 1.8V to the core circuits and 1.2V to the I/O circuits and approximately 50% power reduction of write operations, read operations, and I/O data transfers.

<table>
<thead>
<tr>
<th>The General Specification of Prototype</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package Type</td>
</tr>
<tr>
<td>Storage Capacity (GB)</td>
</tr>
<tr>
<td>Number of Stacks</td>
</tr>
<tr>
<td>External Dimension (mm)</td>
</tr>
<tr>
<td>W</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>H</td>
</tr>
<tr>
<td>Interface</td>
</tr>
</tbody>
</table>
Toshiba next generation memory STT-MRAM

~ Volatile to Non-Volatile ~
Future computing Architecture with STT-MRAM

STT-MRAM (Non Volatile Memory) can bring.....

Less Data Moving / Less volatility management

✓ No or Less backup (refresh) required
✓ No huge battery backup required
✓ Less leakage current
✓ Get smaller die size or larger cache size (cache use case)
✓ Better radiation resistant
✓etc....

Better system performance and TCO (Total Cost of Ownership)
Future computing Architecture with MRAM

Now

- Host
- CPU Core
- L1 Cache
- L2 Cache
- L3 Cache
- DRAM (e.g. 16GB/DIMM)
- RAID Card
- HDD / SSD
- BIOS/Cache
- eDRAM (Intel/IBM)
- SoC(ASIC)/FPGA
- SRAM Cache
- DRAM Cache
- BIOS Flash
- For Controller SoC

Possible future

- Host
- CPU Core
- L1 Cache
- L2 Cache
- L3 Cache
- eMRAM for Cache/FlipFlop
- Virtual Memory/Storage
- S/W Architecture
- MRAM for Cache/Buffer/ In-Memory w/ or w/o DRAM
- RAID Card
- HDD / SSD
- eMRAM Cache for SoC
- DRAM Cache
- SoC(ASIC)/FPGA
- eMRAM Cache/Buffer

Volatile

- Non-Volatile

SUBJECT TO CHANGE WITHOUT NOTICE

© 2015 Toshiba Corporation
REstrictions on Product Use

- Toshiba Corporation, and its subsidiaries and affiliates (collectively "TOSHIBA"), reserve the right to make changes to the information in this document, and related hardware, software and systems (collectively "Product") without notice.

- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA’s written permission, reproduction is permissible only if reproduction is without alteration/omission.

- Though TOSHIBA works continually to improve Product’s quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the “TOSHIBA Semiconductor Reliability Handbook” and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS’ PRODUCT DESIGN OR APPLICATIONS.

- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT (“UNINTENDED USE”). Except for specific applications as expressly stated in this document, Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used in the finance-related fields. IF YOU USE PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your TOSHIBA sales representative.

- Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.

- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.

- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.

- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.

- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.

- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.